

lOMoARcPSD|887 211 5

elearninginkenya@gmail.com Whatsapp: 0705437337

STRUCTURED PROGRAMMING
DEFINITION OF TERMS

1. HEADER FILE - A header file is a file with extension .h which contains C function declarations

to be shared between several source files. A header file is used in a program by including it with

the use of the preprocessing directive #include, which comes along with the compiler.

#include<stdio.h>

2. EXPRESSION – These are statements that return a value. Expressions combine variables and

constants to create new values or logical conditions which are either true or false e.g.
x + y, x <= y etc

3. KEYWORD - A keyword is a reserved word in C. Reserved words may not be used as constants

or variables or any other identifier names. Examples include auto, else, Long, switch, typedef

,break etc

4. IDENTIFIER - A C identifier is a name used to identify a variable, function, or any other user-

defined item. An identifier starts with a letter A to Z or a to z or an underscore _ followed by zero

or more letters, underscores, and digits (0 to 9). C does not allow punctuation characters such as

@, $, and % within identifiers.

5. COMMENT - These are non-executable program statements meant to enhance program

readability and maintenance- they document the program.

6. FUNCTION - A function is a group of statements, enclosed within curly braces, which together

perform a task.

7. STATEMENT- Statements are expressions, assignments, function calls, or control flow

statements which make up C programs. Statements are terminated using a semicolon.

8. SOURCE CODE – Program instructions in their original form. C source code files have an

extension .c

9. OBJECT CODE – Code produced by a compiler from source code and exists in machine

readable language.

10. EXECUTABLE FILE – Refers to a file in a format that a computer can directly execute and is

created by a compiler.

11. STANDARD LIBRARY – Refers to a collection of precompiled functions/routines that a

program can use. The routines are stored in object format and contain descriptions of functions to

perform I/O, string manipulations, mathematics etc.

12. SIGNED INTEGER – This is an integer that can hold either positive or negative numbers.

13. COMPILER – This is a program that translates source code into object code.

14. PREPROCESSOR COMMAND - The C preprocessor modifies a source file before handing it

over to the compiler for instance by including header files with #include as I #include <stdio.h>

15. LINKER/Binder/Link Editor – This is a program that combines object modules to form an

executable program. The linker combines the object code, the start up code and the code for

4

mailto:elearninginkenya@gmail.com

lOMoARcPSD|887 211 5

elearninginkenya@gmail.com Whatsapp: 0705437337

C DATA TYPES
In the C programming language, data types refer to a system used for declaring variables or

functions of different types. A data type is, therefore, a data storage format that can contain a

specific type or range of values. The type of a variable determines how much space it occupies in

storage and how the bit pattern stored is interpreted.

The basic data types in C are as follows:

Type Description
Char Character data and is used to hold a single character. A character can be a letter,

number, space, punctuation mark, or symbol - 1 byte long

Int A signed whole number in the range -32,768 to 32,767 - 2 bytes long

Float A real number (that is, a number that can contain a fractional part) – 4 bytes

Double A double-precision floating point value. Has more digits to the right of the
decimal point than a float – 8 bytes

Void Represents the absence of type. i.e. represents “no data”

USING C’S DATA TYPE MODIFIERS
The five basic types (int, float, char,double and void) can be modified to your specific need using

the following specifiers.

 Signed

Signed Data Modifier implies that the data type variable can store positive values as well as

negative values.

The use of the modifier with integers is redundant because the default integer declaration

assumes a signed number. The signed modifier is used with char to create a small signed

integer. Specified as signed, a char can hold numbers in the range -128 to 127.

 Unsigned

If we need to change the data type so that it can only store positive values, “unsigned” data

modifier is used.

This can be applied to char and int. When char is unsigned, it can hold positive numbers in

the range 0 to 255.

 Long

Sometimes while coding a program, we need to increase the Storage Capacity of a variable

so that it can store values higher than its maximum limit which is there as default.

This can be applied to both int and double. When applied to int, it doubles its length, in

bits, of the base type that it modifies. For example, an integer is usually 16 bits long.

Therefore a long int is 32 bits in length. When long is applied to a double, it roughly

doubles the precision.

 Short

A “short” type modifier does just the opposite of “long”. If one is not expecting to see high

range values in a program.

For example, if we need to store the “age” of a student in a variable, we will make use of

this type qualifier as we are aware that this value is not going to be very high

The type modifier precedes the type name. For example this declares a long integer.

long int age;

mailto:elearninginkenya@gmail.com

lOMoARcPSD|887 211 5

elearninginkenya@gmail.com Whatsapp: 0705437337

After Pass #3: 94 91 86 84 76 69 1

After Pass #4 (done): 94 91 86 84 76 69 1

First Pass: d = (6 + 1) / 2 = 3. Compare 1st and 4th , 2nd and 5th, and 3rd and 6th

items since they are 3 positions away from each other))

Second Pass: value for d is halved d = (3 + 1) / 2 = 2. Compare items two places

away such as 1st and 3rd ……

Third Pass: value for d is halved d = (2 + 1) / 2 = 1. Compare items one place away

such as 1st and 2nd …..

Last Pass: sort continues until d = 1 and the pass occurs without any swaps.

This sorting process, with its comparison model, is an efficient sorting algorithm.

//Shell Sort Function for Descending Order
void main()

{

int I,d , temp, length[5];

while((d > 1)) // boolean flag (true when not equal to 0)

{

d = (d+1) / 2;

for (i = 0; i < (5 - d); i++)

{

if (num[i + d] > num[i])

{

temp = num[i + d]; // swap positions i+d and i

num[i + d] = num[i];

num[i] = temp;

flag = 1; // tells swap has occurred

}

}

}

return;

}

Quick Sort
The quicksort is considered to be very efficient, with its "divide and conquer"

algorithm. This sort starts by dividing the original array into two sections (partitions)

based upon the value of the first element in the array. Since our example sorts into

descending order, the first section will contain all the elements greater than the first

element. The second section will contain elements less than (or equal to) the first

element. It is possible for the first element to end up in either section.

Let's examine our same example

Array at beginning: 84 69 76 86 94 91

= 1st partition 86 94

91 84 69 76

= 2nd partition 94 91 86 84 69 76

 94 91 86 84 69 76

64

mailto:elearninginkenya@gmail.com

	STRUCTURED PROGRAMMING
	DEFINITION OF TERMS
	Keywords
	C DATA TYPES
	USING C’S DATA TYPE MODIFIERS

	Example (1)
	//Shell Sort Function for Descending Order
	Quick Sort

